Engineering Physics Lab

Course Code	19BS1153	Year	I	Semester	I
Course Category	Basic Sciences	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

Course Outcomes							
Upon s	Upon successful completion of the course, the student will be able to						
CO1	Assess the intensity of the magnetic field of circular coil carrying current with						
	varying distance and utilize four probe set up to measure resistance.						
CO2	Evaluate the acceptance angle of an optical fiber and numerical aperture and loss.						
CO3	Demonstrate the importance of dielectric material and measure magnetic parameters.						
CO4	Identify the type of semiconductor using hall effect and determine the band gap of a						
	semiconductor.						
CO5	Understand the characteristics of photodiode, p-n junction diode and solar						
	cell.Type equation here.						

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (H:High, M: Medium, L:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н		Н										M	
CO2	Н		Н										Н	
CO3	Н		Н										M	
CO4	Н		Н										Н	
CO5	Н	·	Н										Н	

Syllabus						
Expt.	pt. Contents					
No.		CO				
I	To Determine The Magnetic Field Along The Axis Of A Circular Coil					
	Carrying Current					
II	To Determine The Magnetic Susceptibility By Gouy's Method					
III	To Determine The Numerical Aperture Of A Given Optical Fibre And	CO2				
	Hence To Find Its Acceptance Angle	CO2				
IV	To Determine The Dielectric Constant Of A Substance By Resonance	CO3				
	Method	CO3				
V	To Determine The Resistivity Of Semiconductor By Four Probe Method					
VI	To Determine The Hall Coefficient Using Hall Effect Experiment.	CO4				
VII	To Determine The Energy Gap Of A Semiconductor					
VIII	To Study The Characteristics Of Photo Diode					
IX	To Study The Characteristics Of PN Diode	CO5				
X	To Study The Characteristics Of Solar Cell					

Learning Resources	
Text Books	

RamaraoSri, Choudary Nityanand and Prasad Daruka, "Lab Manual of	Engineering
Physics"., Vth ed., Excell Books, 2010	
Reference Books	
Semiconductor Devices & Physics, S.M.Sze, Wiley, 2008.	
e- Resources & other digital material	
https://www.niser.ac.in/sps/teaching-laboratories	